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Applications of Advanced Regression
Analysis for Trading and Investment∗

CHRISTIAN L. DUNIS AND MARK WILLIAMS

ABSTRACT

This chapter examines and analyses the use of regression models in trading and investment
with an application to foreign exchange (FX) forecasting and trading models. It is not
intended as a general survey of all potential applications of regression methods to the
field of quantitative trading and investment, as this would be well beyond the scope of
a single chapter. For instance, time-varying parameter models are not covered here as
they are the focus of another chapter in this book and Neural Network Regression (NNR)
models are also covered in yet another chapter.

In this chapter, NNR models are benchmarked against some other traditional regression-
based and alternative forecasting techniques to ascertain their potential added value as a
forecasting and quantitative trading tool.

In addition to evaluating the various models using traditional forecasting accuracy
measures, such as root-mean-squared errors, they are also assessed using financial criteria,
such as risk-adjusted measures of return.

Having constructed a synthetic EUR/USD series for the period up to 4 January 1999, the
models were developed using the same in-sample data, leaving the remainder for out-of-
sample forecasting, October 1994 to May 2000, and May 2000 to July 2001, respectively.
The out-of-sample period results were tested in terms of forecasting accuracy, and in
terms of trading performance via a simulated trading strategy. Transaction costs are also
taken into account.

It is concluded that regression models, and in particular NNR models do have the ability
to forecast EUR/USD returns for the period investigated, and add value as a forecasting
and quantitative trading tool.

1.1 INTRODUCTION

Since the breakdown of the Bretton Woods system of fixed exchange rates in 1971–1973
and the implementation of the floating exchange rate system, researchers have been moti-
vated to explain the movements of exchange rates. The global FX market is massive with
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an estimated current daily trading volume of USD 1.5 trillion, the largest part concerning
spot deals, and is considered deep and very liquid. By currency pairs, the EUR/USD is
the most actively traded.

The primary factors affecting exchange rates include economic indicators, such as
growth, interest rates and inflation, and political factors. Psychological factors also play a
part given the large amount of speculative dealing in the market. In addition, the movement
of several large FX dealers in the same direction can move the market. The interaction
of these factors is complex, making FX prediction generally difficult.

There is justifiable scepticism in the ability to make money by predicting price changes
in any given market. This scepticism reflects the efficient market hypothesis according
to which markets fully integrate all of the available information, and prices fully adjust
immediately once new information becomes available. In essence, the markets are fully
efficient, making prediction useless. However, in actual markets the reaction to new infor-
mation is not necessarily so immediate. It is the existence of market inefficiencies that
allows forecasting. However, the FX spot market is generally considered the most efficient,
again making prediction difficult.

Forecasting exchange rates is vital for fund managers, borrowers, corporate treasurers,
and specialised traders. However, the difficulties involved are demonstrated by the fact
that only three out of every 10 spot foreign exchange dealers make a profit in any given
year (Carney and Cunningham, 1996).

It is often difficult to identify a forecasting model because the underlying laws may
not be clearly understood. In addition, FX time series may display signs of nonlinearity
which traditional linear forecasting techniques are ill equipped to handle, often producing
unsatisfactory results. Researchers confronted with problems of this nature increasingly
resort to techniques that are heuristic and nonlinear. Such techniques include the use of
NNR models.

The prediction of FX time series is one of the most challenging problems in forecasting.
Our main motivation in this chapter is to determine whether regression models and, among
these, NNR models can extract any more from the data than traditional techniques. Over
the past few years, NNR models have provided an attractive alternative tool for researchers
and analysts, claiming improved performance over traditional techniques. However, they
have received less attention within financial areas than in other fields.

Typically, NNR models are optimised using a mathematical criterion, and subsequently
analysed using similar measures. However, statistical measures are often inappropriate
for financial applications. Evaluation using financial measures may be more appropriate,
such as risk-adjusted measures of return. In essence, trading driven by a model with a
small forecast error may not be as profitable as a model selected using financial criteria.

The motivation for this chapter is to determine the added value, or otherwise, of NNR
models by benchmarking their results against traditional regression-based and other fore-
casting techniques. Accordingly, financial trading models are developed for the EUR/USD
exchange rate, using daily data from 17 October 1994 to 18 May 2000 for in-sample
estimation, leaving the period from 19 May 2000 to 3 July 2001 for out-of-sample fore-
casting.1 The trading models are evaluated in terms of forecasting accuracy and in terms
of trading performance via a simulated trading strategy.

1 The EUR/USD exchange rate only exists from 4 January 1999: it was retropolated from 17 October 1994 to
31 December 1998 and a synthetic EUR/USD series was created for that period using the fixed EUR/DEM
conversion rate agreed in 1998, combined with the USD/DEM daily market rate.
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Our results clearly show that NNR models do indeed add value to the forecast-
ing process.

The chapter is organised as follows. Section 1.2 presents a brief review of some of the
research in FX markets. Section 1.3 describes the data used, addressing issues such as
stationarity. Section 1.4 presents the benchmark models selected and our methodology.
Section 1.5 briefly discusses NNR model theory and methodology, raising some issues
surrounding the technique. Section 1.6 describes the out-of-sample forecasting accuracy
and trading simulation results. Finally, Section 1.7 provides some concluding remarks.

1.2 LITERATURE REVIEW

It is outside the scope of this chapter to provide an exhaustive survey of all FX applica-
tions. However, we present a brief review of some of the material concerning financial
applications of NNR models that began to emerge in the late 1980s.

Bellgard and Goldschmidt (1999) examined the forecasting accuracy and trading per-
formance of several traditional techniques, including random walk, exponential smoothing,
and ARMA models with Recurrent Neural Network (RNN) models.2 The research was
based on the Australian dollar to US dollar (AUD/USD) exchange rate using half hourly
data during 1996. They conclude that statistical forecasting accuracy measures do not
have a direct bearing on profitability, and FX time series exhibit nonlinear patterns that
are better exploited by neural network models.

Tyree and Long (1995) disagree, finding the random walk model more effective than the
NNR models examined. They argue that although price changes are not strictly random,
in their case the US dollar to Deutsche Mark (USD/DEM) daily price changes from 1990
to 1994, from a forecasting perspective what little structure is actually present may well
be too negligible to be of any use. They acknowledge that the random walk is unlikely
to be the optimal forecasting technique. However, they do not assess the performance of
the models financially.

The USD/DEM daily price changes were also the focus for Refenes and Zaidi (1993).
However they use the period 1984 to 1992, and take a different approach. They developed
a hybrid system for managing exchange rate strategies. The idea was to use a neural
network model to predict which of a portfolio of strategies is likely to perform best
in the current context. The evaluation was based upon returns, and concludes that the
hybrid system is superior to the traditional techniques of moving averages and mean-
reverting processes.

El-Shazly and El-Shazly (1997) examined the one-month forecasting performance of
an NNR model compared with the forward rate of the British pound (GBP), German
Mark (DEM), and Japanese yen (JPY) against a common currency, although they do not
state which, using weekly data from 1988 to 1994. Evaluation was based on forecasting
accuracy and in terms of correctly forecasting the direction of the exchange rate. Essen-
tially, they conclude that neural networks outperformed the forward rate both in terms of
accuracy and correctness.

Similar FX rates are the focus for Gençay (1999). He examined the predictability of
daily spot exchange rates using four models applied to five currencies, namely the French
franc (FRF), DEM, JPY, Swiss franc (CHF), and GBP against a common currency from

2 A brief discussion of RNN models is presented in Section 1.5.
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1973 to 1992. The models include random walk, GARCH(1,1), NNR models and nearest
neighbours. The models are evaluated in terms of forecasting accuracy and correctness of
sign. Essentially, he concludes that non-parametric models dominate parametric ones. Of
the non-parametric models, nearest neighbours dominate NNR models.

Yao et al. (1996) also analysed the predictability of the GBP, DEM, JPY, CHF, and
AUD against the USD, from 1984 to 1995, but using weekly data. However, they take an
ARMA model as a benchmark. Correctness of sign and trading performance were used
to evaluate the models. They conclude that NNR models produce a higher correctness
of sign, and consequently produce higher returns, than ARMA models. In addition, they
state that without the use of extensive market data or knowledge, useful predictions can
be made and significant paper profit can be achieved.

Yao et al. (1997) examine the ability to forecast the daily USD/CHF exchange rate
using data from 1983 to 1995. To evaluate the performance of the NNR model, “buy and
hold” and “trend following” strategies were used as benchmarks. Again, the performance
was evaluated through correctness of sign and via a trading simulation. Essentially, com-
pared with the two benchmarks, the NNR model performed better and produced greater
paper profit.

Carney and Cunningham (1996) used four data sets over the period 1979 to 1995
to examine the single-step and multi-step prediction of the weekly GBP/USD, daily
GBP/USD, weekly DEM/SEK (Swedish krona) and daily GBP/DEM exchange rates.
The neural network models were benchmarked by a naı̈ve forecast and the evaluation
was based on forecasting accuracy. The results were mixed, but concluded that neural
network models are useful techniques that can make sense of complex data that defies
traditional analysis.

A number of the successful forecasting claims using NNR models have been pub-
lished. Unfortunately, some of the work suffers from inadequate documentation regarding
methodology, for example El-Shazly and El-Shazly (1997), and Gençay (1999). This
makes it difficult to both replicate previous work and obtain an accurate assessment of
just how well NNR modelling techniques perform in comparison to other forecasting
techniques, whether regression-based or not.

Notwithstanding, it seems pertinent to evaluate the use of NNR models as an alternative
to traditional forecasting techniques, with the intention to ascertain their potential added
value to this specific application, namely forecasting the EUR/USD exchange rate.

1.3 THE EXCHANGE RATE AND RELATED FINANCIAL DATA

The FX market is perhaps the only market that is open 24 hours a day, seven days a
week. The market opens in Australasia, followed by the Far East, the Middle East and
Europe, and finally America. Upon the close of America, Australasia returns to the market
and begins the next 24-hour cycle. The implication for forecasting applications is that in
certain circumstances, because of time-zone differences, researchers should be mindful
when considering which data and which subsequent time lags to include.

In any time series analysis it is critical that the data used is clean and error free since
the learning of patterns is totally data-dependent. Also significant in the study of FX time
series forecasting is the rate at which data from the market is sampled. The sampling
frequency depends on the objectives of the researcher and the availability of data. For
example, intraday time series can be extremely noisy and “a typical off-floor trader. . .



Applications of Advanced Regression Analysis 5

would most likely use daily data if designing a neural network as a component of an
overall trading system” (Kaastra and Boyd, 1996: 220). For these reasons the time series
used in this chapter are all daily closing data obtained from a historical database provided
by Datastream.

The investigation is based on the London daily closing prices for the EUR/USD
exchange rate.3 In the absence of an indisputable theory of exchange rate determina-
tion, we assumed that the EUR/USD exchange rate could be explained by that rate’s
recent evolution, volatility spillovers from other financial markets, and macro-economic
and monetary policy expectations. With this in mind it seemed reasonable to include,
as potential inputs, other leading traded exchange rates, the evolution of important stock
and commodity prices, and, as a measure of macro-economic and monetary policy expec-
tations, the evolution of the yield curve. The data retained is presented in Table 1.1
along with the relevant Datastream mnemonics, and can be reviewed in Sheet 1 of the
DataAppendix.xls Excel spreadsheet.

Table 1.1 Data and Datastream mnemonics

Number Variable Mnemonics

1 FTSE 100 – PRICE INDEX FTSE100
2 DAX 30 PERFORMANCE – PRICE INDEX DAXINDX
3 S&P 500 COMPOSITE – PRICE INDEX S&PCOMP
4 NIKKEI 225 STOCK AVERAGE – PRICE INDEX JAPDOWA
5 FRANCE CAC 40 – PRICE INDEX FRCAC40
6 MILAN MIB 30 – PRICE INDEX ITMIB30
7 DJ EURO STOXX 50 – PRICE INDEX DJES50I
8 US EURO-$ 3 MONTH (LDN:FT) – MIDDLE RATE ECUS$3M
9 JAPAN EURO-$ 3 MONTH (LDN:FT) – MIDDLE RATE ECJAP3M

10 EURO EURO-CURRENCY 3 MTH (LDN:FT) – MIDDLE RATE ECEUR3M
11 GERMANY EURO-MARK 3 MTH (LDN:FT) – MIDDLE RATE ECWGM3M
12 FRANCE EURO-FRANC 3 MTH (LDN:FT) – MIDDLE RATE ECFFR3M
13 UK EURO-£ 3 MONTH (LDN:FT) – MIDDLE RATE ECUK£3M
14 ITALY EURO-LIRE 3 MTH (LDN:FT) – MIDDLE RATE ECITL3M
15 JAPAN BENCHMARK BOND-RYLD.10 YR (DS) – RED. YIELD JPBRYLD
16 ECU BENCHMARK BOND 10 YR (DS) ‘DEAD’ – RED. YIELD ECBRYLD
17 GERMANY BENCHMARK BOND 10 YR (DS) – RED. YIELD BDBRYLD
18 FRANCE BENCHMARK BOND 10 YR (DS) – RED. YIELD FRBRYLD
19 UK BENCHMARK BOND 10 YR (DS) – RED. YIELD UKMBRYD
20 US TREAS. BENCHMARK BOND 10 YR (DS) – RED. YIELD USBD10Y
21 ITALY BENCHMARK BOND 10 YR (DS) – RED. YIELD ITBRYLD
22 JAPANESE YEN TO US $ (WMR) – EXCHANGE RATE JAPAYE$
23 US $ TO UK £ (WMR) – EXCHANGE RATE USDOLLR
24 US $ TO EURO (WMR) – EXCHANGE RATE USEURSP
25 Brent Crude-Current Month, fob US $/BBL OILBREN
26 GOLD BULLION $/TROY OUNCE GOLDBLN
27 Bridge/CRB Commodity Futures Index – PRICE INDEX NYFECRB

3 EUR/USD is quoted as the number of USD per euro: for example, a value of 1.2657 is USD1.2657 per euro.
The EUR/USD series for the period 1994–1998 was constructed as indicated in footnote 1.
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All the series span the period from 17 October 1994 to 3 July 2001, totalling 1749
trading days. The data is divided into two periods: the first period runs from 17 October
1994 to 18 May 2000 (1459 observations) used for model estimation and is classified
in-sample, while the second period from 19 May 2000 to 3 July 2001 (290 observa-
tions) is reserved for out-of-sample forecasting and evaluation. The division amounts to
approximately 17% being retained for out-of-sample purposes.

Over the review period there has been an overall appreciation of the USD against
the euro, as presented in Figure 1.1. The summary statistics of the EUR/USD for the
examined period are presented in Figure 1.2, highlighting a slight skewness and low
kurtosis. The Jarque–Bera statistic confirms that the EUR/USD series is non-normal at the
99% confidence interval. Therefore, the indication is that the series requires some type of
transformation. The use of data in levels in the FX market has many problems, “FX price
movements are generally non-stationary and quite random in nature, and therefore not very
suitable for learning purposes. . . Therefore for most neural network studies and analysis
concerned with the FX market, price inputs are not a desirable set” (Mehta, 1995: 191).

To overcome these problems, the EUR/USD series is transformed into rates of return.
Given the price level P1, P2, . . . , Pt , the rate of return at time t is formed by:

Rt =
(

Pt

Pt−1

)
− 1 (1.1)

An example of this transformation can be reviewed in Sheet 1 column C of the
oos Naı̈ve.xls Excel spreadsheet, and is also presented in Figure 1.5. See also the comment
in cell C4 for an explanation of the calculations within this column.

An advantage of using a returns series is that it helps in making the time series sta-
tionary, a useful statistical property.

Formal confirmation that the EUR/USD returns series is stationary is confirmed at the
1% significance level by both the Augmented Dickey–Fuller (ADF) and Phillips–Perron
(PP) test statistics, the results of which are presented in Tables 1.2 and 1.3.

The EUR/USD returns series is presented in Figure 1.3. Transformation into returns
often creates a noisy time series. Formal confirmation through testing the significance of
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Figure 1.1 EUR/USD London daily closing prices (17 October 1994 to 3 July 2001)4

4 Retropolated series for 17 October 1994 to 31 December 1998.
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Series:USEURSP
Sample 1 1749
Observations 1749

Mean
Median
Maximum
Minimum
Std. Dev.
Skewness
Kurtosis

1.117697
1.117400
1.347000
0.828700
0.136898

−0.329711
2.080124

Jarque–Bera
Probability

93.35350
0.000000

Figure 1.2 EUR/USD summary statistics (17 October 1994 to 3 July 2001)

Table 1.2 EUR/USD returns ADF test

ADF test statistic −18.37959 1% critical valuea −3.4371
5% critical value −2.8637

10% critical value −2.5679

aMacKinnon critical values for rejection of hypothesis of a unit root.

Augmented Dickey–Fuller Test Equation
Dependent Variable: D(DR−USEURSP)
Method: Least Squares
Sample(adjusted): 7 1749
Included observations: 1743 after adjusting endpoints

Variable Coefficient Std. error t-Statistic Prob.

DR−USEURSP(−1) −0.979008 0.053266 −18.37959 0.0000
D(DR−USEURSP(−1)) −0.002841 0.047641 −0.059636 0.9525
D(DR−USEURSP(−2)) −0.015731 0.041288 −0.381009 0.7032
D(DR−USEURSP(−3)) −0.011964 0.033684 −0.355179 0.7225
D(DR−USEURSP(−4)) −0.014248 0.024022 −0.593095 0.5532
C −0.000212 0.000138 −1.536692 0.1246

R-squared 0.491277 Mean dependent var. 1.04E-06
Adjusted R-squared 0.489812 S.D. dependent var. 0.008048
S.E. of regression 0.005748 Akaike info. criterion −7.476417
Sum squared resid. 0.057394 Schwarz criterion −7.457610
Log likelihood 6521.697 F -statistic 335.4858
Durbin–Watson stat. 1.999488 Prob(F -statistic) 0.000000
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Table 1.3 EUR/USD returns PP test

PP test statistic −41.04039 1% critical valuea −3.4370
5% critical value −2.8637

10% critical value −2.5679

aMacKinnon critical values for rejection of hypothesis of a unit root.

Lag truncation for Bartlett kernel: 7 (Newey–West suggests: 7)
Residual variance with no correction 3.29E-05
Residual variance with correction 3.26E-05

Phillips–Perron Test Equation
Dependent Variable: D(DR−USEURSP)
Method: Least Squares
Sample(adjusted): 3 1749
Included observations: 1747 after adjusting endpoints

Variable Coefficient Std. error t-Statistic Prob.

DR−USEURSP(−1) −0.982298 0.023933 −41.04333 0.0000
C −0.000212 0.000137 −1.539927 0.1238

R-squared 0.491188 Mean dependent var. −1.36E-06
Adjusted R-squared 0.490896 S.D. dependent var. 0.008041
S.E. of regression 0.005737 Akaike info. criterion −7.482575
Sum squared resid. 0.057436 Schwarz criterion −7.476318
Log likelihood 6538.030 F -statistic 1684.555
Durbin–Watson stat. 1.999532 Prob(F -statistic) 0.000000
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Figure 1.3 The EUR/USD returns series (18 October 1994 to 3 July 2001)
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the autocorrelation coefficients reveals that the EUR/USD returns series is white noise
at the 99% confidence interval, the results of which are presented in Table 1.4. For such
series the best predictor of a future value is zero. In addition, very noisy data often makes
forecasting difficult.

The EUR/USD returns summary statistics for the examined period are presented in
Figure 1.4. They reveal a slight skewness and high kurtosis and, again, the Jarque–Bera
statistic confirms that the EUR/USD series is non-normal at the 99% confidence
interval. However, such features are “common in high frequency financial time series
data” (Gençay, 1999: 94).

Table 1.4 EUR/USD returns correlogram

Sample: 1 1749
Included observations: 1748

Autocorrelation Partial correlation Q-Stat. Prob.

1 0.018 0.018 0.5487 0.459
2 −0.012 −0.013 0.8200 0.664
3 0.003 0.004 0.8394 0.840
4 −0.002 −0.002 0.8451 0.932
5 0.014 0.014 1.1911 0.946
6 −0.009 −0.010 1.3364 0.970
7 0.007 0.008 1.4197 0.985
8 −0.019 −0.019 2.0371 0.980
9 0.001 0.002 2.0405 0.991

10 0.012 0.012 2.3133 0.993
11 0.012 0.012 2.5787 0.995
12 −0.028 −0.029 3.9879 0.984
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0.000000

−0.0250 −0.0125 0.0000 0.0125 0.0250

Figure 1.4 EUR/USD returns summary statistics (17 October 1994 to 3 July 2001)
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A further transformation includes the creation of interest rate yield curve series, gen-
erated by:

yc = 10 year benchmark bond yields–3 month interest rates (1.2)

In addition, all of the time series are transformed into returns series in the manner
described above to account for their non-stationarity.

1.4 BENCHMARK MODELS: THEORY AND METHODOLOGY

The premise of this chapter is to examine the use of regression models in EUR/USD
forecasting and trading models. In particular, the performance of NNR models is compared
with other traditional forecasting techniques to ascertain their potential added value as
a forecasting tool. Such methods include ARMA modelling, logit estimation, Moving
Average Convergence/Divergence (MACD) technical models, and a naı̈ve strategy. Except
for the straightforward naı̈ve strategy, all benchmark models were estimated on our in-
sample period. As all of these methods are well documented in the literature, they are
simply outlined below.

1.4.1 Naı̈ve strategy

The naı̈ve strategy simply assumes that the most recent period change is the best predictor
of the future. The simplest model is defined by:

Ŷt+1 = Yt (1.3)

where Yt is the actual rate of return at period t and Ŷt+1 is the forecast rate of return for
the next period.

The naı̈ve forecast can be reviewed in Sheet 1 column E of the oos Naı̈ve.xls Excel
spreadsheet, and is also presented in Figure 1.5. Also, please note the comments within
the spreadsheet that document the calculations used within the naı̈ve, ARMA, logit, and
NNR strategies.

The performance of the strategy is evaluated in terms of forecasting accuracy and in
terms of trading performance via a simulated trading strategy.

1.4.2 MACD strategy

Moving average methods are considered quick and inexpensive and as a result are rou-
tinely used in financial markets. The techniques use an average of past observations to
smooth short-term fluctuations. In essence, “a moving average is obtained by finding the
mean for a specified set of values and then using it to forecast the next period” (Hanke
and Reitsch, 1998: 143).

The moving average is defined as:

Mt = Ŷt+1 = (Yt + Yt−1 + Yt−2 + · · · + Yt−n+1)

n
(1.4)
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Figure 1.5 Naı̈ve forecast Excel spreadsheet (out-of-sample)

where Mt is the moving average at time t , n is the number of terms in the moving average,
Yt is the actual level at period t5 and Ŷt+1 is the level forecast for the next period.

The MACD strategy used is quite simple. Two moving average series M1,t and M2,t

are created with different moving average lengths n and m. The decision rule for tak-
ing positions in the market is straightforward. If the short-term moving average (SMA)
intersects the long-term moving average (LMA) from below a “long” position is taken.
Conversely, if the LMA is intersected from above a “short” position is taken.6 This strat-
egy can be reviewed in Sheet 1 column E of the is 35&1MA.xls Excel spreadsheet, and
is also presented in Figure 1.6. Again, please note the comments within the spreadsheet
that document the calculations used within the MACD strategy.

The forecaster must use judgement when determining the number of periods n and m

on which to base the moving averages. The combination that performed best over the
in-sample period was retained for out-of-sample evaluation. The model selected was a
combination of the EUR/USD series and its 35-day moving average, namely n = 1 and
m = 35 respectively, or a (1,35) combination. A graphical representation of the combina-
tion is presented in Figure 1.7. The performance of this strategy is evaluated in terms of
forecasting accuracy via the correct directional change measure, and in terms of trading
performance.

Several other “adequate” models were produced and their performance evaluated. The
trading performance of some of these combinations, such as the (1,40) combination, and

5 In this strategy the EUR/USD levels series is used as opposed to the returns series.
6 A “long” EUR/USD position means buying euros at the current price, while a “short” position means selling
euros at the current price.
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Figure 1.6 EUR/USD and 35-day moving average combination Excel spreadsheet
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Figure 1.7 EUR/USD and 35-day moving average combination

the (1,35) combination results were only marginally different. For example, the Sharpe
ratio differs only by 0.01, and the average gain/loss ratio by 0.02. However, the (1,35)
combination has the lowest maximum drawdown at −12.43% and lowest probability of
a 10% loss at 0.02%.7 The evaluation can be reviewed in Sheet 2 of the is 35&1MA.xls
and is 40&1MA.xls Excel spreadsheets, and is also presented in Figures 1.8 and 1.9,

7 A discussion of the statistical and trading performance measures used to evaluate the strategies is presented
below in Section 1.6.
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Figure 1.8 (1,35) combination moving average Excel spreadsheet (in-sample)

respectively. On balance, the (1,35) combination was considered “best” and therefore
retained for further analysis.

1.4.3 ARMA methodology

ARMA models are particularly useful when information is limited to a single stationary
series,8 or when economic theory is not useful. They are a “highly refined curve-fitting
device that uses current and past values of the dependent variable to produce accurate
short-term forecasts” (Hanke and Reitsch, 1998: 407).

The ARMA methodology does not assume any particular pattern in a time series, but
uses an iterative approach to identify a possible model from a general class of models.
Once a tentative model has been selected, it is subjected to tests of adequacy. If the
specified model is not satisfactory, the process is repeated using other models until a
satisfactory model is found. Sometimes, it is possible that two or more models may
approximate the series equally well, in this case the most parsimonious model should
prevail. For a full discussion on the procedure refer to Box et al. (1994), Gouriéroux
and Monfort (1995), or Pindyck and Rubinfeld (1998).

The ARMA model takes the form:

Yt = φ0 + φ1Yt−1 + φ2Yt−2 + · · · + φpYt−p + εt − w1εt−1 − w2εt−2 − · · · − wqεt−q

(1.5)

8 The general class of ARMA models is for stationary time series. If the series is not stationary an appropriate
transformation is required.
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Figure 1.9 (1,40) combination moving average Excel spreadsheet (in-sample)

where Yt is the dependent variable at time t ; Yt−1, Yt−2, . . . , Yt−p are the lagged
dependent variables; φ0, φ1, . . . , φp are regression coefficients; εt is the residual term;
εt−1, εt−2, . . . , εt−p are previous values of the residual; w1, w2, . . . , wq are weights.

Several ARMA specifications were tried out, for example ARMA(5,5) and
ARMA(10,10) models were produced to test for any “weekly” effects, which can be
reviewed in the arma.wf1 EViews workfile. The ARMA(10,10) model was estimated but
was unsatisfactory as several coefficients were not even significant at the 90% confidence
interval (equation arma1010). The results of this are presented in Table 1.5. The model
was primarily modified through testing the significance of variables via the likelihood
ratio (LR) test for redundant or omitted variables and Ramsey’s RESET test for model
misspecification.

Once the non-significant terms are removed all of the coefficients of the restricted
ARMA(10,10) model become significant at the 99% confidence interval (equation
arma13610). The overall significance of the model is tested using the F -test. The null
hypothesis that all coefficients except the constant are not significantly different from zero
is rejected at the 99% confidence interval. The results of this are presented in Table 1.6.
Examination of the autocorrelation function of the error terms reveals that the residuals
are random at the 99% confidence interval and a further confirmation is given by the serial
correlation LM test. The results of this are presented in Tables 1.7 and 1.8. The model
is also tested for general misspecification via Ramsey’s RESET test. The null hypothesis
of correct specification is accepted at the 99% confidence interval. The results of this are
presented in Table 1.9.
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Table 1.5 ARMA(10,10) EUR/USD returns estimation

Dependent Variable: DR−USEURSP
Method: Least Squares
Sample(adjusted): 12 1459
Included observations: 1448 after adjusting endpoints
Convergence achieved after 20 iterations
White Heteroskedasticity–Consistent Standard Errors & Covariance
Backcast: 2 11

Variable Coefficient Std. error t-Statistic Prob.

C −0.000220 0.000140 −1.565764 0.1176
AR(1) −0.042510 0.049798 −0.853645 0.3934
AR(2) −0.210934 0.095356 −2.212073 0.0271
AR(3) −0.359378 0.061740 −5.820806 0.0000
AR(4) −0.041003 0.079423 −0.516264 0.6058
AR(5) 0.001376 0.067652 0.020338 0.9838
AR(6) 0.132413 0.054071 2.448866 0.0145
AR(7) −0.238913 0.052594 −4.542616 0.0000
AR(8) 0.182816 0.046878 3.899801 0.0001
AR(9) 0.026431 0.060321 0.438169 0.6613
AR(10) −0.615601 0.076171 −8.081867 0.0000
MA(1) 0.037787 0.040142 0.941343 0.3467
MA(2) 0.227952 0.095346 2.390785 0.0169
MA(3) 0.341293 0.058345 5.849551 0.0000
MA(4) 0.036997 0.074796 0.494633 0.6209
MA(5) −0.004544 0.059140 −0.076834 0.9388
MA(6) −0.140714 0.046739 −3.010598 0.0027
MA(7) 0.253016 0.042340 5.975838 0.0000
MA(8) −0.206445 0.040077 −5.151153 0.0000
MA(9) −0.014011 0.048037 −0.291661 0.7706
MA(10) 0.643684 0.074271 8.666665 0.0000

R-squared 0.016351 Mean dependent var. −0.000225
Adjusted R-squared 0.002565 S.D. dependent var. 0.005363
S.E. of regression 0.005356 Akaike info. criterion −7.606665
Sum squared resid. 0.040942 Schwarz criterion −7.530121
Log likelihood 5528.226 F -statistic 1.186064
Durbin–Watson stat. 1.974747 Prob(F -statistic) 0.256910

Inverted AR roots 0.84 + 0.31i 0.84 − 0.31i 0.55 − 0.82i 0.55 + 0.82i
0.07 + 0.98i 0.07 − 0.98i −0.59 − 0.78i −0.59 + 0.78i

−0.90 + 0.21i −0.90 − 0.21i
Inverted MA roots 0.85 + 0.31i 0.85 − 0.31i 0.55 − 0.82i 0.55 + 0.82i

0.07 − 0.99i 0.07 + 0.99i −0.59 − 0.79i −0.59 + 0.79i
−0.90 + 0.20i −0.90 − 0.20i
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Table 1.6 Restricted ARMA(10,10) EUR/USD returns estimation

Dependent Variable: DR−USEURSP
Method: Least Squares
Sample(adjusted): 12 1459
Included observations: 1448 after adjusting endpoints
Convergence achieved after 50 iterations
White Heteroskedasticity–Consistent Standard Errors & Covariance
Backcast: 2 11

Variable Coefficient Std. error t-Statistic Prob.

C −0.000221 0.000144 −1.531755 0.1258
AR(1) 0.263934 0.049312 5.352331 0.0000
AR(3) −0.444082 0.040711 −10.90827 0.0000
AR(6) −0.334221 0.035517 −9.410267 0.0000
AR(10) −0.636137 0.043255 −14.70664 0.0000
MA(1) −0.247033 0.046078 −5.361213 0.0000
MA(3) 0.428264 0.030768 13.91921 0.0000
MA(6) 0.353457 0.028224 12.52307 0.0000
MA(10) 0.675965 0.041063 16.46159 0.0000

R-squared 0.015268 Mean dependent var. −0.000225
Adjusted R-squared 0.009793 S.D. dependent var. 0.005363
S.E. of regression 0.005337 Akaike info. criterion −7.622139
Sum squared resid. 0.040987 Schwarz criterion −7.589334
Log likelihood 5527.429 F -statistic 2.788872
Durbin–Watson stat. 2.019754 Prob(F -statistic) 0.004583

Inverted AR roots 0.89 + 0.37i 0.89 − 0.37i 0.61 + 0.78i 0.61 − 0.78i
0.08 − 0.98i 0.08 + 0.98i −0.53 − 0.70i −0.53 + 0.70i

−0.92 + 0.31i −0.92 − 0.31i
Inverted MA roots 0.90 − 0.37i 0.90 + 0.37i 0.61 + 0.78i 0.61 − 0.78i

0.07 + 0.99i 0.07 − 0.99i −0.54 − 0.70i −0.54 + 0.70i
−0.93 + 0.31i −0.93 − 0.31i

The selected ARMA model, namely the restricted ARMA(10,10) model, takes the form:

Yt = −0.0002 + 0.2639Yt−1 − 0.4440Yt−3 − 0.3342Yt−6 − 0.6361Yt−10

− 0.2470εt−1 + 0.4283εt−3 + 0.3535εt−6 + 0.6760εt−10

The restricted ARMA(10,10) model was retained for out-of-sample estimation. The per-
formance of the strategy is evaluated in terms of traditional forecasting accuracy and
in terms of trading performance. Several other models were produced and their per-
formance evaluated, for example an alternative restricted ARMA(10,10) model was pro-
duced (equation arma16710). The decision to retain the original restricted ARMA(10,10)
model is because it has significantly better in-sample trading results than the alternative
ARMA(10,10) model. The annualised return, Sharpe ratio and correct directional change
of the original model were 12.65%, 1.49 and 53.80%, respectively. The corresponding
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Table 1.7 Restricted ARMA(10,10) correlogram of residuals

Sample: 12 1459
Included observations: 1448
Q-statistic probabilities adjusted for 8 ARMA term(s)

Autocorrelation Partial correlation Q-Stat. Prob.

1 −0.010 −0.010 0.1509
2 −0.004 −0.004 0.1777
3 0.004 0.004 0.1973
4 −0.001 −0.001 0.1990
5 0.000 0.000 0.1991
6 −0.019 −0.019 0.7099
7 −0.004 −0.004 0.7284
8 −0.015 −0.015 1.0573
9 0.000 0.000 1.0573 0.304

10 0.009 0.009 1.1824 0.554
11 0.031 0.032 2.6122 0.455
12 −0.024 −0.024 3.4600 0.484
13 0.019 0.018 3.9761 0.553
14 −0.028 −0.028 5.0897 0.532
15 0.008 0.008 5.1808 0.638

values for the alternative model were 9.47%, 1.11 and 52.35%. The evaluation can be
reviewed in Sheet 2 of the is arma13610.xls and is arma16710.xls Excel spreadsheets,
and is also presented in Figures 1.10 and 1.11, respectively. Ultimately, we chose the
model that satisfied the usual statistical tests and that also recorded the best in-sample
trading performance.

1.4.4 Logit estimation

The logit model belongs to a group of models termed “classification models”. They
are a multivariate statistical technique used to estimate the probability of an upward or
downward movement in a variable. As a result they are well suited to rates of return
applications where a recommendation for trading is required. For a full discussion of the
procedure refer to Maddala (2001), Pesaran and Pesaran (1997), or Thomas (1997).

The approach assumes the following regression model:

Y ∗
t = β0 + β1X1,t + β2X2,t + · · · + βpXp,t + εt (1.6)

where Y ∗
t is the dependent variable at time t ; X1,t , X2,t , . . . , Xp,t are the explanatory

variables at time t ; β0, β1, . . . , βp are the regression coefficients; εt is the residual term.
However, Y ∗

t is not directly observed; what is observed is a dummy variable Yt

defined by:

Yt =
{

1 if Y ∗
t > 0

0 otherwise
(1.7)

Therefore, the model requires a transformation of the explained variable, namely the
EUR/USD returns series into a binary series. The procedure is quite simple: a binary
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Table 1.8 Restricted ARMA(10,10) serial correlation LM test

Breusch–Godfrey Serial Correlation LM Test

F -statistic 0.582234 Probability 0.558781
Obs*R-squared 1.172430 Probability 0.556429

Dependent Variable: RESID
Method: Least Squares
Presample missing value lagged residuals set to zero

Variable Coefficient Std. error t-Statistic Prob.

C 8.33E-07 0.000144 0.005776 0.9954
AR(1) 0.000600 0.040612 0.014773 0.9882
AR(3) 0.019545 0.035886 0.544639 0.5861
AR(6) 0.018085 0.031876 0.567366 0.5706
AR(10) −0.028997 0.037436 −0.774561 0.4387
MA(1) −0.000884 0.038411 −0.023012 0.9816
MA(3) −0.015096 0.026538 −0.568839 0.5696
MA(6) −0.014584 0.026053 −0.559792 0.5757
MA(10) 0.029482 0.035369 0.833563 0.4047
RESID(−1) −0.010425 0.031188 −0.334276 0.7382
RESID(−2) −0.004640 0.026803 −0.173111 0.8626

R-squared 0.000810 Mean dependent var. 1.42E-07
Adjusted R-squared −0.006144 S.D. dependent var. 0.005322
S.E. of regression 0.005338 Akaike info. criterion −7.620186
Sum squared resid. 0.040953 Schwarz criterion −7.580092
Log likelihood 5528.015 F -statistic 0.116447
Durbin–Watson stat. 1.998650 Prob(F -statistic) 0.999652

Table 1.9 Restricted ARMA(10,10) RESET test for model misspecification

Ramsey RESET Test

F -statistic 0.785468 Probability 0.375622
Log likelihood ratio 0.790715 Probability 0.373884

variable equal to one is produced if the return is positive, and zero otherwise. The same
transformation for the explanatory variables, although not necessary, was performed for
homogeneity reasons.

A basic regression technique is used to produce the logit model. The idea is to start with
a model containing several variables, including lagged dependent terms, then through a
series of tests the model is modified.

The selected logit model, which we shall name logit1 (equation logit1 of the logit.wf1
EViews workfile), takes the form:



Applications of Advanced Regression Analysis 19

Figure 1.10 Restricted ARMA(10,10) model Excel spreadsheet (in-sample)

Y ∗
t = 0.2492 − 0.3613X1,t − 0.2872X2,t + 0.2862X3,t + 0.2525X4,t

− 0.3692X5,t − 0.3937X6,t + εt

where X1,t , . . . , X6,t are the JP yc(−2), UK yc(−9), JAPDOWA(−1), ITMIB30(−19),
JAPAYE$(−10), and OILBREN(−1) binary explanatory variables, respectively.9

All of the coefficients in the model are significant at the 98% confidence interval. The
overall significance of the model is tested using the LR test. The null hypothesis that all
coefficients except the constant are not significantly different from zero is rejected at the
99% confidence interval. The results of this are presented in Table 1.10.

To justify the use of Japanese variables, which seems difficult from an economic per-
spective, the joint overall significance of this subset of variables is tested using the LR test
for redundant variables. The null hypothesis that these coefficients, except the constant,
are not jointly significantly different from zero is rejected at the 99% confidence interval.
The results of this are presented in Table 1.11. In addition, a model that did not include
the Japanese variables, but was otherwise identical to logit1, was produced and the trad-
ing performance evaluated, which we shall name nojap (equation nojap of the logit.wf1
EViews workfile). The Sharpe ratio, average gain/loss ratio and correct directional change
of the nojap model were 1.34, 1.01 and 54.38%, respectively. The corresponding values
for the logit1 model were 2.26, 1.01 and 58.13%. The evaluation can be reviewed in
Sheet 2 of the is logit1.xls and is nojap.xls Excel spreadsheets, and is also presented in
Figures 1.12 and 1.13, respectively.

9 Datastream mnemonics as mentioned in Table 1.1, yield curves and lags in brackets are used to save space.
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Figure 1.11 Alternative restricted ARMA(10,10) model Excel spreadsheet (in-sample)

The logit1 model was retained for out-of-sample estimation. As, in practice, the estima-
tion of the model is based upon the cumulative distribution of the logistic function for the
error term, the forecasts produced range between zero and one, requiring transformation
into a binary series. Again, the procedure is quite simple: a binary variable equal to one
is produced if the forecast is greater than 0.5 and zero otherwise.

The performance of the strategy is evaluated in terms of forecast accuracy via the
correct directional change measure and in terms of trading performance. Several other
adequate models were produced and their performance evaluated. None performed better
in-sample, therefore the logit1 model was retained.

1.5 NEURAL NETWORK MODELS: THEORY
AND METHODOLOGY

Neural networks are “data-driven self-adaptive methods in that there are few a priori
assumptions about the models under study” (Zhang et al., 1998: 35). As a result, they are
well suited to problems where economic theory is of little use. In addition, neural networks
are universal approximators capable of approximating any continuous function (Hornik
et al., 1989).

Many researchers are confronted with problems where important nonlinearities
exist between the independent variables and the dependent variable. Often, in
such circumstances, traditional forecasting methods lack explanatory power. Recently,
nonlinear models have attempted to cover this shortfall. In particular, NNR models
have been applied with increasing success to financial markets, which often contain
nonlinearities (Dunis and Jalilov, 2002).
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Table 1.10 Logit1 EUR/USD returns estimation

Dependent Variable: BDR−USEURSP
Method: ML – Binary Logit
Sample(adjusted): 20 1459
Included observations: 1440 after adjusting endpoints
Convergence achieved after 3 iterations
Covariance matrix computed using second derivatives

Variable Coefficient Std. error z-Statistic Prob.

C 0.249231 0.140579 1.772894 0.0762
BDR−JP−YC(−2) −0.361289 0.108911 −3.317273 0.0009
BDR−UK−YC(−9) −0.287220 0.108397 −2.649696 0.0081
BDR−JAPDOWA(−1) 0.286214 0.108687 2.633369 0.0085
BDR−ITMIB31(−19) 0.252454 0.108056 2.336325 0.0195
BDR−JAPAYE$(−10) −0.369227 0.108341 −3.408025 0.0007
BDR−OILBREN(−1) −0.393689 0.108476 −3.629261 0.0003

Mean dependent var. 0.457639 S.D. dependent var. 0.498375
S.E. of regression 0.490514 Akaike info. criterion 1.353305
Sum squared resid. 344.7857 Schwarz criterion 1.378935
Log likelihood −967.3795 Hannan–Quinn criterion 1.362872
Restr. log likelihood −992.9577 Avg. log likelihood −0.671791
LR statistic (6 df) 51.15635 McFadden R-squared 0.025760
Prob(LR statistic) 2.76E-09

Obs. with dep = 0 781 Total obs. 1440
Obs. with dep = 1 659

Theoretically, the advantage of NNR models over traditional forecasting methods is
because, as is often the case, the model best adapted to a particular problem cannot be
identified. It is then better to resort to a method that is a generalisation of many models,
than to rely on an a priori model (Dunis and Huang, 2002).

However, NNR models have been criticised and their widespread success has been hin-
dered because of their “black-box” nature, excessive training times, danger of overfitting,
and the large number of “parameters” required for training. As a result, deciding on the
appropriate network involves much trial and error.

For a full discussion on neural networks, please refer to Haykin (1999), Kaastra and
Boyd (1996), Kingdon (1997), or Zhang et al. (1998). Notwithstanding, we provide below
a brief description of NNR models and procedures.

1.5.1 Neural network models

The will to understand the functioning of the brain is the basis for the study of neural
networks. Mathematical modelling started in the 1940s with the work of McCulloch and
Pitts, whose research was based on the study of networks composed of a number of simple
interconnected processing elements called neurons or nodes. If the description is correct,
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Table 1.11 Logit1 estimation redundant variables LR test

Redundant Variables: BDR−JP−YC(−2), BDR−JAPDOWA(−1), BDR−JAPAYE$(−10)

F -statistic 9.722023 Probability 0.000002
Log likelihood ratio 28.52168 Probability 0.000003

Test Equation:
Dependent Variable: BDR−USEURSP
Method: ML – Binary Logit
Sample: 20 1459
Included observations: 1440
Convergence achieved after 3 iterations
Covariance matrix computed using second derivatives

Variable Coefficient Std. error z-Statistic Prob.

C −0.013577 0.105280 −0.128959 0.8974
BDR−UK−YC(−9) −0.247254 0.106979 −2.311245 0.0208
BDR−ITMIB31(−19) 0.254096 0.106725 2.380861 0.0173
BDR−OILBREN(−1) −0.345654 0.106781 −3.237047 0.0012

Mean dependent var. 0.457639 S.D. dependent var. 0.498375
S.E. of regression 0.494963 Akaike info. criterion 1.368945
Sum squared resid. 351.8032 Schwarz criterion 1.383590
Log likelihood −981.6403 Hannan–Quinn criterion 1.374412
Restr. log likelihood −992.9577 Avg. log likelihood −0.681695
LR statistic (3 df) 22.63467 McFadden R-squared 0.011398
Prob(LR statistic) 4.81E-05

Obs. with dep = 0 781 Total obs. 1440
Obs. with dep = 1 659

they can be turned into models mimicking some of the brain’s functions, possibly with
the ability to learn from examples and then to generalise on unseen examples.

A neural network is typically organised into several layers of elementary processing
units or nodes. The first layer is the input layer, the number of nodes corresponding
to the number of variables, and the last layer is the output layer, the number of nodes
corresponding to the forecasting horizon for a forecasting problem.10 The input and output
layer can be separated by one or more hidden layers, with each layer containing one or
more hidden nodes.11 The nodes in adjacent layers are fully connected. Each neuron
receives information from the preceding layer and transmits to the following layer only.12

The neuron performs a weighted summation of its inputs; if the sum passes a threshold
the neuron transmits, otherwise it remains inactive. In addition, a bias neuron may be
connected to each neuron in the hidden and output layers. The bias has a value of positive

10 Linear regression models may be viewed analogously to neural networks with no hidden layers (Kaastra and
Boyd, 1996).
11 Networks with hidden layers are multilayer networks; a multilayer perceptron network is used for this chapter.
12 If the flow of information through the network is from the input to the output, it is known as “feedforward”.
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Figure 1.12 Logit1 estimation Excel spreadsheet (in-sample)

Figure 1.13 Nojap estimation Excel spreadsheet (in-sample)
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Figure 1.14 A single output fully connected NNR model

one and is analogous to the intercept in traditional regression models. An example of
a fully connected NNR model with one hidden layer and two nodes is presented in
Figure 1.14.

The vector A = (x[1], x[2], . . . , x[n]) represents the input to the NNR model where x
[i]
t is

the level of activity of the ith input. Associated with the input vector is a series of weight
vectors Wj = (w1j , w2j , . . . , wnj ) so that wij represents the strength of the connection
between the input x

[i]
t and the processing unit bj . There may also be the input bias ϕj

modulated by the weight w0j associated with the inputs. The total input of the node bj

is the dot product between vectors A and Wj , less the weighted bias. It is then passed
through a nonlinear activation function to produce the output value of processing unit bj :

bj = f

(
n∑

i=1

x[i]wij − w0jϕj

)
= f (Xj ) (1.8)

Typically, the activation function takes the form of the logistic function, which introduces
a degree of nonlinearity to the model and prevents outputs from reaching very large
values that can “paralyse” NNR models and inhibit training (Kaastra and Boyd, 1996;
Zhang et al., 1998). Here we use the logistic function:

f (Xj ) = 1

1 + e−Xj
(1.9)

The modelling process begins by assigning random values to the weights. The output
value of the processing unit is passed on to the output layer. If the output is optimal,
the process is halted, if not, the weights are adjusted and the process continues until an
optimal solution is found. The output error, namely the difference between the actual
value and the NNR model output, is the optimisation criterion. Commonly, the criterion
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is the root-mean-squared error (RMSE). The RMSE is systematically minimised through
the adjustment of the weights. Basically, training is the process of determining the optimal
solutions network weights, as they represent the knowledge learned by the network. Since
inadequacies in the output are fed back through the network to adjust the network weights,
the NNR model is trained by backpropagation13 (Shapiro, 2000).

A common practice is to divide the time series into three sets called the training, test and
validation (out-of-sample) sets, and to partition them as roughly 2

3 , 1
6 and 1

6 , respectively.
The testing set is used to evaluate the generalisation ability of the network. The technique
consists of tracking the error on the training and test sets. Typically, the error on the
training set continually decreases, however the test set error starts by decreasing and
then begins to increase. From this point the network has stopped learning the similarities
between the training and test sets, and has started to learn meaningless differences, namely
the noise within the training data. For good generalisation ability, training should stop
when the test set error reaches its lowest point. The stopping rule reduces the likelihood
of overfitting, i.e. that the network will become overtrained (Dunis and Huang, 2002;
Mehta, 1995).

An evaluation of the performance of the trained network is made on new examples not
used in network selection, namely the validation set. Crucially, the validation set should
never be used to discriminate between networks, as any set that is used to choose the
best network is, by definition, a test set. In addition, good generalisation ability requires
that the training and test sets are representative of the population, inappropriate selection
will affect the network generalisation ability and forecast performance (Kaastra and Boyd,
1996; Zhang et al., 1998).

1.5.2 Issues in neural network modelling

Despite the satisfactory features of NNR models, the process of building them should not
be taken lightly. There are many issues that can affect the network’s performance and
should be considered carefully.

The issue of finding the most parsimonious model is always a problem for statistical
methods and particularly important for NNR models because of the problem of overfitting.
Parsimonious models not only have the recognition ability but also the more important
generalisation ability. Overfitting and generalisation are always going to be a problem
for real-world situations, and this is particularly true for financial applications where time
series may well be quasi-random, or at least contain noise.

One of the most commonly used heuristics to ensure good generalisation is the applica-
tion of some form of Occam’s Razor. The principle states, “unnecessary complex models
should not be preferred to simpler ones. However . . . more complex models always fit
the data better” (Kingdon, 1997: 49). The two objectives are, of course, contradictory.
The solution is to find a model with the smallest possible complexity, and yet which can
still describe the data set (Haykin, 1999; Kingdon, 1997).

A reasonable strategy in designing NNR models is to start with one layer containing a
few hidden nodes, and increase the complexity while monitoring the generalisation ability.
The issue of determining the optimal number of layers and hidden nodes is a crucial factor

13 Backpropagation networks are the most common multilayer network and are the most used type in financial
time series forecasting (Kaastra and Boyd, 1996). We use them exclusively here.
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for good network design, as the hidden nodes provide the ability to generalise. However,
in most situations there is no way to determine the best number of hidden nodes without
training several networks. Several rules of thumb have been proposed to aid the process,
however none work well for all applications. Notwithstanding, simplicity must be the
aim (Mehta, 1995).

Since NNR models are pattern matchers, the representation of data is critical for a
successful network design. The raw data for the input and output variables are rarely fed
into the network, they are generally scaled between the upper and lower bounds of the
activation function. For the logistic function the range is [0,1], avoiding the function’s
saturation zones. Practically, as here, a normalisation [0.2,0.8] is often used with the
logistic function, as its limits are only reached for infinite input values (Zhang et al.,
1998).

Crucial for backpropagation learning is the learning rate of the network as it determines
the size of the weight changes. Smaller learning rates slow the learning process, while
larger rates cause the error function to change wildly without continuously improving.
To improve the process a momentum parameter is used which allows for larger learning
rates. The parameter determines how past weight changes affect current weight changes,
by making the next weight change in approximately the same direction as the previous
one14 (Kaastra and Boyd, 1996; Zhang et al., 1998).

1.5.3 Neural network modelling procedure

Conforming to standard heuristics, the training, test and validation sets were partitioned
as approximately 2

3 , 1
6 and 1

6 , respectively. The training set runs from 17 October 1994
to 8 April 1999 (1169 observations), the test set runs from 9 April 1999 to 18 May
2000 (290 observations), and the validation set runs from 19 May 2000 to 3 July 2001
(290 observations), reserved for out-of-sample forecasting and evaluation, identical to the
out-of-sample period for the benchmark models.

To start, traditional linear cross-correlation analysis helped establish the existence of
a relationship between EUR/USD returns and potential explanatory variables. Although
NNR models attempt to map nonlinearities, linear cross-correlation analysis can give
some indication of which variables to include in a model, or at least a starting point to
the analysis (Diekmann and Gutjahr, 1998; Dunis and Huang, 2002).

The analysis was performed for all potential explanatory variables. Lagged terms
that were most significant as determined via the cross-correlation analysis are presented
in Table 1.12.

The lagged terms SPCOMP(−1) and US yc(−1) could not be used because of time-zone
differences between London and the USA, as discussed at the beginning of Section 1.3.
As an initial substitute SPCOMP(−2) and US yc(−2) were used. In addition, various
lagged terms of the EUR/USD returns were included as explanatory variables.

Variable selection was achieved via a forward stepwise NNR procedure, namely poten-
tial explanatory variables were progressively added to the network. If adding a new
variable improved the level of explained variance (EV) over the previous “best” network,
the pool of explanatory variables was updated.15 Since the aim of the model-building

14 The problem of convergence did not occur within this research; as a result, a learning rate of 0.1 and
momentum of zero were used exclusively.
15 EV is an approximation of the coefficient of determination, R2, in traditional regression techniques.
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Table 1.12 Most significant lag
of each potential explanatory
variable (in returns)

Variable Best lag

DAXINDX 10
DJES50I 10
FRCAC40 10
FTSE100 5
GOLDBLN 19
ITMIB 9
JAPAYE$ 10
OILBREN 1
JAPDOWA 15
SPCOMP 1
USDOLLR 12
BD yc 19
EC yc 2
FR yc 9
IT yc 2
JP yc 6
UK yc 19
US yc 1
NYFECRB 20

procedure is to build a model with good generalisation ability, a model that has a higher
EV level has a better ability. In addition, a good measure of this ability is to compare
the EV level of the test and validation sets: if the test set and validation set levels are
similar, the model has been built to generalise well.

The decision to use explained variance is because the EUR/USD returns series is a
stationary series and stationarity remains important if NNR models are assessed on the
level of explained variance (Dunis and Huang, 2002). The EV levels for the training,
test and validation sets of the selected NNR model, which we shall name nnr1 (nnr1.prv
Previa file), are presented in Table 1.13.

An EV level equal to, or greater than, 80% was used as the NNR learning termination
criterion. In addition, if the NNR model did not reach this level within 1500 learning
sweeps, again the learning terminates. The criteria selected are reasonable for daily data
and were used exclusively here.

If after several attempts there was failure to improve on the previous “best” model,
variables in the model were alternated in an attempt to find a better combination. This

Table 1.13 nnr1 model EV for the training,
test and validation sets

Training set Test set Validation set

3.4% 2.3% 2.2%
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procedure recognises the likelihood that some variables may only be relevant predictors
when in combination with certain other variables.

Once a tentative model is selected, post-training weights analysis helps establish the
importance of the explanatory variables, as there are no standard statistical tests for NNR
models. The idea is to find a measure of the contribution a given weight has to the
overall output of the network, in essence allowing detection of insignificant variables.
Such analysis includes an examination of a Hinton graph, which represents graphically
the weight matrix within the network. The principle is to include in the network variables
that are strongly significant. In addition, a small bias weight is preferred (Diekmann and
Gutjahr, 1998; Kingdon, 1997; Previa, 2001). The input to a hidden layer Hinton graph
of the nnr1 model produced by Previa is presented in Figure 1.15. The graph suggests
that the explanatory variables of the selected model are strongly significant, both positive
(green) and negative (black), and that there is a small bias weight. In addition, the input
to hidden layer weight matrix of the nnr1 model produced by Previa is presented in
Table 1.14.

The nnr1 model contained the returns of the explanatory variables presented in
Table 1.15, having one hidden layer containing five hidden nodes.

Again, to justify the use of the Japanese variables a further model that did not include
these variables, but was otherwise identical to nnr1, was produced and the performance
evaluated, which we shall name nojap (nojap.prv Previa file). The EV levels of the training

Figure 1.15 Hinton graph of the nnr1 EUR/USD returns model
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Table 1.14 Input to hidden layer weight matrix of the nnr1 EUR/USD returns model

GOLD
BLN
(−19)

JAPAY
E$

(−10)

JAP
DOWA
(−15)

OIL
BREN
(−1)

US
DOLLR
(−12)

FR yc
(−2)

IT yc
(−6)

JP yc
(−9)

JAPAY
E$

(−1)

JAP
DOWA

(−1)

Bias

C[1,0] 0.2316 −0.2120 −0.4336 −0.4579 −0.2621 −0.3911 0.2408 0.4295 0.4067 0.4403 −0.0824
C[1,1] 0.4016 −0.1752 −0.3589 −0.5474 −0.3663 −0.4623 0.2438 0.2786 0.2757 0.4831 −0.0225
C[1,2] 0.2490 −0.3037 −0.4462 −0.5139 −0.2506 −0.3491 0.2900 0.3634 0.2737 0.4132 −0.0088
C[1,3] 0.3382 −0.3588 −0.4089 −0.5446 −0.2730 −0.4531 0.2555 0.4661 0.4153 0.5245 0.0373
C[1,4] 0.3338 −0.3283 −0.4086 −0.6108 −0.2362 −0.4828 0.3088 0.4192 0.4254 0.4779 −0.0447

Table 1.15 nnr1 model explana-
tory variables (in returns)

Variable Lag

GOLDBLN 19
JAPAYE$ 10
JAPDOWA 15
OILBREN 1
USDOLLR 12
FR yc 2
IT yc 6
JP yc 9
JAPAYE$ 1
JAPDOWA 1

and test sets of the nojap model were 1.4 and 0.6 respectively, which are much lower
than the nnr1 model.

The nnr1 model was retained for out-of-sample estimation. The performance of the
strategy is evaluated in terms of traditional forecasting accuracy and in terms of trading
performance.

Several other adequate models were produced and their performance evaluated, includ-
ing RNN models.16 In essence, the only difference from NNR models is the addition of a
loop back from a hidden or the output layer to the input layer. The loop back is then used
as an input in the next period. There is no theoretical or empirical answer to whether the
hidden layer or the output should be looped back. However, the looping back of either
allows RNN models to keep the memory of the past,17 a useful property in forecasting
applications. This feature comes at a cost, as RNN models require more connections,
raising the issue of complexity. Since simplicity is the aim, a less complex model that
can still describe the data set is preferred.

The statistical forecasting accuracy results of the nnr1 model and the RNN model,
which we shall name rnn1 (rnn1.prv Previa file), were only marginally different, namely
the mean absolute percentage error (MAPE) differs by 0.09%. However, in terms of

16 For a discussion on recurrent neural network models refer to Dunis and Huang (2002).
17 The looping back of the output layer is an error feedback mechanism, implying the use of a nonlinear
error-correction model (Dunis and Huang, 2002).
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Figure 1.16 nnr1 model Excel spreadsheet (in-sample)

Figure 1.17 rnn1 model Excel spreadsheet (in-sample)
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trading performance there is little to separate the nnr1 and rnn1 models. The evaluation
can be reviewed in Sheet 2 of the is nnr1.xls and is rnn1.xls Excel spreadsheets, and is
also presented in Figures 1.16 and 1.17, respectively.

The decision to retain the nnr1 model over the rnn1 model is because the rnn1 model is
more complex and yet does not possess any decisive added value over the simpler model.

1.6 FORECASTING ACCURACY AND TRADING SIMULATION

To compare the performance of the strategies, it is necessary to evaluate them on pre-
viously unseen data. This situation is likely to be the closest to a true forecasting or
trading situation. To achieve this, all models retained an identical out-of-sample period
allowing a direct comparison of their forecasting accuracy and trading performance.

1.6.1 Out-of-sample forecasting accuracy measures

Several criteria are used to make comparisons between the forecasting ability of the
benchmark and NNR models, including mean absolute error (MAE), RMSE,18 MAPE,
and Theil’s inequality coefficient (Theil-U).19 For a full discussion on these measures, refer
to Hanke and Reitsch (1998) and Pindyck and Rubinfeld (1998). We also include correct
directional change (CDC), which measures the capacity of a model to correctly predict the
subsequent actual change of a forecast variable, an important issue in a trading strategy
that relies on the direction of a forecast rather than its level. The statistical performance
measures used to analyse the forecasting techniques are presented in Table 1.16.

1.6.2 Out-of-sample trading performance measures

Statistical performance measures are often inappropriate for financial applications. Typi-
cally, modelling techniques are optimised using a mathematical criterion, but ultimately
the results are analysed on a financial criterion upon which it is not optimised. In other
words, the forecast error may have been minimised during model estimation, but the
evaluation of the true merit should be based on the performance of a trading strategy.
Without actual trading, the best means of evaluating performance is via a simulated trad-
ing strategy. The procedure to create the buy and sell signals is quite simple: a EUR/USD
buy signal is produced if the forecast is positive, and a sell otherwise.20

For many traders and analysts market direction is more important than the value of
the forecast itself, as in financial markets money can be made simply by knowing the
direction the series will move. In essence, “low forecast errors and trading profits are not
synonymous since a single large trade forecasted incorrectly . . . could have accounted for
most of the trading system’s profits” (Kaastra and Boyd, 1996: 229).

The trading performance measures used to analyse the forecasting techniques are pre-
sented in Tables 1.17 and 1.18. Most measures are self-explanatory and are commonly
used in the fund management industry. Some of the more important measures include
the Sharpe ratio, maximum drawdown and average gain/loss ratio. The Sharpe ratio is a

18 The MAE and RMSE statistics are scale-dependent measures but allow a comparison between the actual and
forecast values, the lower the values the better the forecasting accuracy.
19 When it is more important to evaluate the forecast errors independently of the scale of the variables, the
MAPE and Theil-U are used. They are constructed to lie within [0,1], zero indicating a perfect fit.
20 A buy signal is to buy euros at the current price or continue holding euros, while a sell signal is to sell euros
at the current price or continue holding US dollars.
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Table 1.16 Statistical performance measures

Performance measure Description

Mean absolute error MAE = 1

T

T∑
t=1

|ỹt − yt | (1.10)

Mean absolute percentage error MAPE = 100

T

T∑
t=1

∣∣∣∣ ỹt − yt

yt

∣∣∣∣ (1.11)

Root-mean-squared error RMSE =
√√√√ 1

T

T∑
t=1

(ỹt − yt )
2 (1.12)

Theil’s inequality coefficient U =

√√√√ 1

T

T∑
t=1

(ỹt − yt )
2

√√√√ 1

T

T∑
t=1

(ỹt )
2 +

√√√√ 1

T

T∑
t=1

(yt )
2

(1.13)

Correct directional change CDC = 100

N

N∑
t=1

Dt (1.14)

where Dt = 1 if yt · ỹt > 0 else Dt = 0

yt is the actual change at time t .
ỹt is the forecast change.
t = 1 to t = T for the forecast period.

risk-adjusted measure of return, with higher ratios preferred to those that are lower, the
maximum drawdown is a measure of downside risk and the average gain/loss ratio is
a measure of overall gain, a value above one being preferred (Dunis and Jalilov, 2002;
Fernandez-Rodriguez et al., 2000).

The application of these measures may be a better standard for determining the quality
of the forecasts. After all, the financial gain from a given strategy depends on trading
performance, not on forecast accuracy.

1.6.3 Out-of-sample forecasting accuracy results

The forecasting accuracy statistics do not provide very conclusive results. Each of the
models evaluated, except the logit model, are nominated “best” at least once. Interestingly,
the naı̈ve model has the lowest Theil-U statistic at 0.6901; if this model is believed to be
the “best” model there is likely to be no added value using more complicated forecasting
techniques. The ARMA model has the lowest MAPE statistic at 101.51%, and equals
the MAE of the NNR model at 0.0056. The NNR model has the lowest RMSE statistic,
however the value is only marginally less than the ARMA model. The MACD model has
the highest CDC measure, predicting daily changes accurately 60.00% of the time. It is
difficult to select a “best” performer from these results, however a majority decision rule
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Table 1.17 Trading simulation performance measures

Performance measure Description

Annualised return RA = 252 × 1

N

N∑
t=1

Rt (1.15)

Cumulative return RC =
N∑

t=1

RT (1.16)

Annualised volatility σA = √
252 ×

√√√√ 1

N − 1

N∑
t=1

(Rt − R)2 (1.17)

Sharpe ratio SR = RA

σA
(1.18)

Maximum daily profit Maximum value of Rt over the period (1.19)
Maximum daily loss Minimum value of Rt over the period (1.20)

Maximum drawdown Maximum negative value of
∑

(RT ) over the period

MD = min
t=1,...,N

(
Rc

t − max
i=1,...,t

(
Rc

i

))
(1.21)

% Winning trades WT = 100 ×

N∑
t=1

Ft

NT
(1.22)

where Ft = 1 if transaction profitt > 0

% Losing trades LT = 100 ×

N∑
t=1

Gt

NT
(1.23)

where Gt = 1 if transaction profitt < 0
Number of up periods Nup = number of Rt > 0 (1.24)
Number of down periods Ndown = number of Rt < 0 (1.25)

Number of transactions NT =
N∑

t=1

Lt (1.26)

where Lt = 1 if trading signalt �= trading signalt−1
Total trading days Number of all Rt ’s (1.27)
Avg. gain in up periods AG = (Sum of all Rt > 0)/Nup (1.28)
Avg. loss in down periods AL = (Sum of all Rt < 0)/Ndown (1.29)
Avg. gain/loss ratio GL = AG/AL (1.30)

PoL =
[

(1 − P)

P

](
MaxRisk

�

)

Probability of 10% loss where P = 0.5 ×
(

1 +
(

〈(WT × AG) + (LT × AL)〉√
[(WT × AG2) + (LT × AL2)]

))
(1.31)

and � = √
[(WT × AG2) + (LT × AL2)]

MaxRisk is the risk level defined by the user; this research, 10%

Profits T -statistics T -statistics = √
N × RA

σA
(1.32)

Source: Dunis and Jalilov (2002).
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Table 1.18 Trading simulation performance measures

Performance measure Description

Number of periods daily
returns rise

NPR =
N∑

t=1

Qt

where Qt = 1 if yt > 0 else Qt = 0

(1.33)

Number of periods daily
returns fall

NPF =
N∑

t=1

St

where St = 1 if yt < 0 else St = 0

(1.34)

Number of winning up
periods

NWU =
N∑

t=1

Bt

where Bt = 1 if Rt > 0 and yt > 0 else Bt = 0

(1.35)

Number of winning down
periods

NWD =
N∑

t=1

Et

where Et = 1 if Rt > 0 and yt < 0 else Et = 0

(1.36)

Winning up periods (%) WUP = 100 × (NWU/NPR) (1.37)
Winning down periods (%) WDP = 100 × (NWD/NPF) (1.38)

Table 1.19 Forecasting accuracy results21

Naı̈ve MACD ARMA Logit NNR

Mean absolute error 0.0080 – 0.0056 – 0.0056
Mean absolute percentage error 317.31% – 101.51% – 107.38%
Root-mean-squared error 0.0102 – 0.0074 – 0.0073
Theil’s inequality coefficient 0.6901 – 0.9045 – 0.8788
Correct directional change 55.86% 60.00% 56.55% 53.79% 57.24%

might select the NNR model as the overall “best” model because it is nominated “best”
twice and also “second best” by the other three statistics. A comparison of the forecasting
accuracy results is presented in Table 1.19.

1.6.4 Out-of-sample trading performance results

A comparison of the trading performance results is presented in Table 1.20 and
Figure 1.18. The results of the NNR model are quite impressive. It generally outperforms
the benchmark strategies, both in terms of overall profitability with an annualised return
of 29.68% and a cumulative return of 34.16%, and in terms of risk-adjusted performance
with a Sharpe ratio of 2.57. The logit model has the lowest downside risk as measured
by maximum drawdown at −5.79%, and the MACD model has the lowest downside risk

21 As the MACD model is not based on forecasting the next period and binary variables are used in the logit
model, statistical accuracy comparisons with these models were not always possible.
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Table 1.20 Trading performance results

Naı̈ve MACD ARMA Logit NNR

Annualised return 21.34% 11.34% 12.91% 21.05% 29.68%
Cumulative return 24.56% 13.05% 14.85% 24.22% 34.16%
Annualised volatility 11.64% 11.69% 11.69% 11.64% 11.56%
Sharpe ratio 1.83 0.97 1.10 1.81 2.57
Maximum daily profit 3.38% 1.84% 3.38% 1.88% 3.38%
Maximum daily loss −2.10% −3.23% −2.10% −3.38% −1.82%
Maximum drawdown −9.06% −7.75% −10.10% −5.79% −9.12%
% Winning trades 37.01% 24.00% 52.71% 49.65% 52.94%
% Losing trades 62.99% 76.00% 47.29% 50.35% 47.06%
Number of up periods 162 149 164 156 166
Number of down periods 126 138 124 132 122
Number of transactions 127 25 129 141 136
Total trading days 290 290 290 290 290
Avg. gain in up periods 0.58% 0.60% 0.55% 0.61% 0.60%
Avg. loss in down periods −0.56% −0.55% −0.61% −0.53% −0.54%
Avg. gain/loss ratio 1.05 1.08 0.91 1.14 1.12
Probability of 10% loss 0.70% 0.02% 5.70% 0.76% 0.09%
Profits T -statistics 31.23 16.51 18.81 30.79 43.71

Number of periods daily returns rise 128 128 128 128 128
Number of periods daily returns fall 162 162 162 162 162
Number of winning up periods 65 45 56 49 52
Number of winning down periods 97 104 108 106 114
% Winning up periods 50.78% 35.16% 43.75% 38.28% 40.63%
% Winning down periods 59.88% 64.20% 66.67% 66.05% 70.37%
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Figure 1.18 Cumulated profit graph

as measured by the probability of a 10% loss at 0.02%, however this is only marginally
less than the NNR model at 0.09%.

The NNR model predicted the highest number of winning down periods at 114, while
the naı̈ve model forecast the highest number of winning up periods at 65. Interestingly,
all models were more successful at forecasting a fall in the EUR/USD returns series, as
indicated by a greater percentage of winning down periods to winning up periods.
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The logit model has the highest number of transactions at 141, while the NNR model
has the second highest at 136. The MACD strategy has the lowest number of transactions
at 25. In essence, the MACD strategy has longer “holding” periods compared to the
other models, suggesting that the MACD strategy is not compared “like with like” to the
other models.

More than with statistical performance measures, financial criteria clearly single out the
NNR model as the one with the most consistent performance. Therefore it is considered
the “best” model for this particular application.

1.6.5 Transaction costs

So far, our results have been presented without accounting for transaction costs during the
trading simulation. However, it is not realistic to account for the success or otherwise of
a trading system unless transaction costs are taken into account. Between market makers,
a cost of 3 pips (0.0003 EUR/USD) per trade (one way) for a tradable amount, typically
USD 5–10 million, would be normal. The procedure to approximate the transaction costs
for the NNR model is quite simple.

A cost of 3 pips per trade and an average out-of-sample EUR/USD of 0.8971 produce
an average cost of 0.033% per trade:

0.0003

0.8971
= 0.033%

The NNR model made 136 transactions. Since the EUR/USD time series is a series of
bid rates and because, apart from the first trade, each signal implies two transactions, one
to close the existing position and a second one to enter the new position indicated by the
model signal, the approximate out-of-sample transaction costs for the NNR model trading
strategy are about 4.55%:

136 × 0.033% = 4.55%

Therefore, even accounting for transaction costs, the extra returns achieved with the
NNR model still make this strategy the most attractive one despite its relatively high
trading frequency.

1.7 CONCLUDING REMARKS

This chapter has evaluated the use of different regression models in forecasting and trading
the EUR/USD exchange rate. The performance was measured statistically and financially
via a trading simulation taking into account the impact of transaction costs on models
with higher trading frequencies. The logic behind the trading simulation is, if profit from
a trading simulation is compared solely on the basis of statistical measures, the optimum
model from a financial perspective would rarely be chosen.

The NNR model was benchmarked against more traditional regression-based and other
benchmark forecasting techniques to determine any added value to the forecasting process.
Having constructed a synthetic EUR/USD series for the period up to 4 January 1999, the
models were developed using the same in-sample data, 17 October 1994 to 18 May 2000,
leaving the remaining period, 19 May 2000 to 3 July 2001, for out-of-sample forecasting.
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Forecasting techniques rely on the weaknesses of the efficient market hypothesis,
acknowledging the existence of market inefficiencies, with markets displaying even weak
signs of predictability. However, FX markets are relatively efficient, reducing the scope of
a profitable strategy. Consequently, the FX managed futures industry average Sharpe ratio
is only 0.8, although a percentage of winning trades greater than 60% is often required
to run a profitable FX trading desk (Grabbe, 1996 as cited in Bellgard and Goldschmidt,
1999: 10). In this respect, it is worth noting that only one of our models reached a 60%
winning trades accuracy, namely the MACD model at 60.00%. Nevertheless, all of the
models examined in this chapter achieved an out-of-sample Sharpe ratio higher than 0.8,
the highest of which was again the NNR model at 2.57. This seems to confirm that the
use of quantitative trading is more appropriate in a fund management than in a treasury
type of context.

Forecasting techniques are dependent on the quality and nature of the data used. If the
solution to a problem is not within the data, then no technique can extract it. In addition,
sufficient information should be contained within the in-sample period to be representative
of all cases within the out-of-sample period. For example, a downward trending series
typically has more falls represented in the data than rises. The EUR/USD is such a series
within the in-sample period. Consequently, the forecasting techniques used are estimated
using more negative values than positive values. The probable implication is that the
models are more likely to successfully forecast a fall in the EUR/USD, as indicated by
our results, with all models forecasting a higher percentage of winning down periods than
winning up periods. However, the naı̈ve model does not learn to generalise per se, and
as a result has the smallest difference between the number of winning up to winning
down periods.

Overall our results confirm the credibility and potential of regression models and par-
ticularly NNR models as a forecasting technique. However, while NNR models offer a
promising alternative to more traditional techniques, they suffer from a number of limita-
tions. They are not the panacea. One of the major disadvantages is the inability to explain
their reasoning, which has led some to consider that “neural nets are truly black boxes.
Once you have trained a neural net and are generating predictions, you still do not know
why the decisions are being made and can’t find out by just looking at the net. It is not
unlike attempting to capture the structure of knowledge by dissecting the human brain”
(Fishman et al., 1991 as cited in El-Shazly and El-Shazly, 1997: 355). In essence, the neu-
ral network learning procedure is not very transparent, requiring a lot of understanding.
In addition, statistical inference techniques such as significance testing cannot always be
applied, resulting in a reliance on a heuristic approach. The complexity of NNR models
suggests that they are capable of superior forecasts, as shown in this chapter, however
this is not always the case. They are essentially nonlinear techniques and may be less ca-
pable in linear applications than traditional forecasting techniques (Balkin and Ord, 2000;
Campbell et al., 1997; Lisboa and Vellido, 2000; Refenes and Zaidi, 1993).

Although the results support the success of neural network models in financial appli-
cations, there is room for increased success. Such a possibility lies with optimising the
neural network model on a financial criterion, and not a mathematical criterion. As the
profitability of a trading strategy relies on correctly forecasting the direction of change,
namely CDC, to optimise the neural network model on such a measure could improve
trading performance. However, backpropagation networks optimise by minimising a dif-
ferentiable function such as squared error, they cannot minimise a function based on loss,
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or conversely, maximise a function based on profit. Notwithstanding, there is possibility
to explore this idea further, provided the neural network software has the ability to select
such an optimisation criterion.

Future work might also include the addition of hourly data as a possible explanatory
variable. Alternatively, the use of first differences instead of rates of return series may be
investigated, as first differences are perhaps the most effective way to generate data sets
for neural network learning (Mehta, 1995).

Further investigation into RNN models is possible, or into combining forecasts. Many
researchers agree that individual forecasting methods are misspecified in some manner,
suggesting that combining multiple forecasts leads to increased forecast accuracy (Dunis
and Huang, 2002). However, initial investigations proved unsuccessful, with the NNR
model remaining the “best” model. Two simple model combinations were examined,
a simple averaging of the naı̈ve, ARMA and NNR model forecasts, and a regression-
type combined forecast using the naı̈ve, ARMA and NNR models.22 The regression-
type combined forecast follows the Granger and Ramanathan procedure (gr.wf1 EViews
workfile). The evaluation can be reviewed in Sheet 2 of the oos gr.xls Excel spreadsheet,
and is also presented in Figure 1.19. The lack of success using the combination models
was undoubtedly because the performance of the benchmark models was so much weaker
than that of the NNR model. It is unlikely that combining relatively “poor” models with
an otherwise “good” one will outperform the “good” model alone.

The main conclusion that can be drawn from this chapter is that there are indeed
nonlinearities present within financial markets and that a neural network model can be

Figure 1.19 Regression-type combined forecast Excel spreadsheet (out-of-sample)

22 For a full discussion on the procedures, refer to Clemen (1989), Granger and Ramanathan (1984), and Hashem
(1997).
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trained to recognise them. However, despite the limitations and potential improvements
mentioned above, our results strongly suggest that regression models and particularly
NNR models can add value to the forecasting process. For the EUR/USD exchange rate
and the period considered, NNR models clearly outperform the more traditional modelling
techniques analysed in this chapter.
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Gençay, R. (1999), “Linear, Non-linear and Essential Foreign Exchange Rate Prediction with Simple
Technical Trading Rules”, Journal of International Economics, 47, 91–107.

Gouriéroux, C. and A. Monfort (1995), Time Series and Dynamic Models, translated and edited by
G. Gallo, Cambridge University Press, Cambridge.

Grabbe, J. O. (1996), International Financial Markets, 3rd edition, Prentice Hall, Englewood Cliffs,
NJ.

Granger, C. W. J. and R. Ramanathan (1984), “Improved Methods of Combining Forecasts”, Jour-
nal of Forecasting, 3, 197–204.

Hanke, J. E. and A. G. Reitsch (1998), Business Forecasting, 6th edition, Prentice Hall, Englewood
Cliffs, NJ.

Hashem, S. (1997), “Optimal Linear Combinations of Neural Networks”, Neural Networks, 10, 4,
599–614 (www.emsl.pnl.gov:2080/people/bionames/hashem s.html).

Haykin, S. (1999), Neural Networks: A Comprehensive Foundation, 2nd edition, Prentice Hall,
Englewood Cliffs, NJ.

Hornik, K., M. Stinchcombe and H. White (1989), “Multilayer Feedforward Networks Are Univer-
sal Approximators”, Neural Networks, 2, 359–366.

Kaastra, I. and M. Boyd (1996), “Designing a Neural Network for Forecasting Financial and
Economic Time Series”, Neurocomputing, 10, 215–236.



40 Applied Quantitative Methods for Trading and Investment

Kingdon, J. (1997), Intelligent Systems and Financial Forecasting, Springer, London.
Lisboa, P. J. G. and A. Vellido (2000), “Business Applications of Neural Networks”, in

P. J. G. Lisboa, B. Edisbury and A. Vellido (eds), Business Applications of Neural Networks:
The State-of-the-Art of Real-World Applications, World Scientific, Singapore, pp. vii–xxii.

Maddala, G. S. (2001), Introduction to Econometrics, 3rd edition, Prentice Hall, Englewood Cliffs,
NJ.

Mehta, M. (1995), “Foreign Exchange Markets”, in A. N. Refenes (ed.), Neural Networks in the
Capital Markets, John Wiley, Chichester, pp. 176–198.

Pesaran, M. H. and B. Pesaran (1997), “Lessons in Logit and Probit Estimation”, in Interactive
Econometric Analysis Working with Microfit 4, Oxford University Press, Oxford, pp. 263–275.

Pindyck, R. S. and D. L. Rubinfeld (1998), Econometric Models and Economic Forecasts, 4th edi-
tion, McGraw-Hill, New York.

Previa (2001), Previa Version 1.5 User’s Guide, (www.elseware.fr/previa).
Refenes, A. N. and A. Zaidi (1993), “Managing Exchange Rate Prediction Strategies with Neural

Networks”, in P. J. G. Lisboa and M. J. Taylor (eds), Techniques and Applications of Neural
Networks, Ellis Horwood, Hemel Hempstead, pp. 109–116.

Shapiro, A. F. (2000), “A Hitchhiker’s Guide to the Techniques of Adaptive Nonlinear Models”,
Insurance, Mathematics and Economics, 26, 119–132.

Thomas, R. L. (1997), Modern Econometrics. An Introduction, Addison-Wesley, Harlow.
Tyree, E. W. and J. A. Long (1995), “Forecasting Currency Exchange Rates: Neural

Networks and the Random Walk Model”, City University Working Paper, Proceedings
of the Third International Conference on Artificial Intelligence Applications , New York,
(http://citeseer.nj.nec.com/131893.html).

Yao, J., H. Poh and T. Jasic (1996), “Foreign Exchange Rates Forecasting with Neural Networks”,
National University of Singapore Working Paper, Proceedings of the International Conference on
Neural Information Processing , Hong Kong, (http://citeseer.nj.com/yao96foreign.html).

Yao, J., Y. Li and C. L. Tan (1997), “Forecasting the Exchange Rates of CHF vs USD Using Neural
Networks”, Journal of Computational Intelligence in Finance, 15, 2, 7–13.

Zhang, G., B. E. Patuwo and M. Y. Hu (1998), “Forecasting with Artificial Neural Networks: The
State of The Art”, International Journal of Forecasting, 14, 35–62.


